Exception handling in Java

Usually we believe that a compiled program is error free and will always execute successfully, but in few
cases the program can terminate while it is executing. For example, if we have written a program that
connects to a particular website and download the web pages, under normal conditions the program will
execute as expected but suppose if the program is executed in a computer where there is no internet
connection then the program will produce unexpected output. There can be similar situations when we
are dealing with files, for instance the program tries to modify a read-only file or it tries to open a file that
does not exist in the system. Such cases are known as "exceptions" in Java. The exception results in an
abnormal execution and it may lead to abnormal termination of the program.

An exception is an indication of a problem that occurs during a program'’s execution, it usually signals an
error. Although exceptions occur infrequently, we must be careful to handle such cases while writing the
code. Exception handling allows a program to continue executing as if no problem had been encountered
or it may notify the user of the problem before terminating in an uncontrolled manner.

In this chapter we will leamn techniques to handle exceptions in our programs, few standard exceptions
available in Java, a technique to guarantee that a particular block of code will always be executed,
even if exceptions are present in our program. Finally we will look at a technique to define and
use our own type of exception

Types of Exceptions

In Java, all kinds of error conditions are called exceptions. Errors can be broadly classified into
two categories namely Compile-time errors and Run-time errors.

Compile-time errors

We have already leamt in previous chapters how to compile our java programs. A compiler is used
to convert source code into object code. If there is a syntax error in the program we will get a
compilation error and will not be able to create the ".class" file. Examples of some common syntax
errors are missing semicolon, use of undeclared vanable, wrong spellings of identifier or keyword
and mismatch of bracket. The java program shown in figure 10.1 does not contain a semicolon.

88O (untitied) * SciTE .
Fite Edit Search View Tools Options Language Buffers Help
DOHR ae XDDB AQAQARXR BT O 68
Lintitled *
1 ™A Proqran which contains ompliation error =)
2 F Semicolon mission on line number - 8 %/
3
4 class ErrorDemo
5 -
6 public static void main(5tring args[])
s~ {
8 System.aut.printin{"Hello World") / Mo Semicalon
9 }
10 }

Figure 10.1 : A program that illustrates Compile-time Error

Exception handling in Java 203

—
The above code when compiled will generate a compile-time error. This happens becanse we have

missed writing the semicolon ;' in line number 8. The Java compiler when showing the output suggests
the type of error, along with the line number where the error has occurred as shown in figure 10.2.

8 8@ Errorpemo.java - SCTE

Filg Edit Search View Tools Options Language Buffers Help

DOBEX a XDD RQA8KX ATO B8

Erroremao java

>javac ErrorDemo.java
ErrcrDemo.java:8: ;' expected
System.out.printin{"Heflo World") /f No Semicolon

1 error
=>Exit code: 1

Figure 10.2 : Output of the program shown in Figure 10.1

Compile-time errors are usually the mistakes of a programmer and it won't allow the program to
compile unless they are solved.

Note : In the field of Computer Science, "Exit code" or "Exit status” indicates whether the command
or a program executed successfully or not. Code "0" indicates that the command executed successfully
whereas code "1" indicates that some problem occurred while executing the command. In figure
10.2, the last line indicates "Exit Code: 1", it means that the compilation of program - ErrorDemo.java
was not successful.

Run-time errors

If there are no syntax errors in the source code then the program will compile successfully and we will
geta".class" file. However this does not guarantee that the program will execute as per our expectations.
Let us look at another example shown in figure 10.3 which will compile but will terminate abnormally.

288 RuntimeErrorDemo.java - SciTE

File Edit Search View Tools Options Langlage Buffers Help L
DO ae XDPR QAKX ATO 68
FuntimeErmrarDema. java
1 -} A program which generates run-Ume error An array of four elements is created but the program tries to
2 access fifth element of the citylist[] array resulting in run-time error */
3
4 class RuntimeErrorDemo
5-4
6 pubiic static void main(String argsl1)
7 - {
8 /* Create an array of four elements */
] String citytist]] = {"Ahmedabad", "Baroda”, "Rajkot”, “Surat™}:
10
11 System.cut.printin{"Statement to be executed before displaying the fifth alement");
12
13 /% Statement that gensrates run-time error */
14 System.out.printin{citylist[5]);
15
16 System.out.printin{"Statement to be executed after displaying the ffth element");
17 }
18 }

Figure 10.3 : A program illustrating run-time error

The program shown in figure 10.3 will compile as there are no syntax errors it. In the program,
we have created an array "citylist[]" that contains name of four different cities. In line 14 we are
trying to display the contents of element of citylist array that does not exist. This case here is an
exception condition. The exception will be generated during runtime; the output of the execution
of the program is shown in figure 10.4.

204 Computer Studies : 12

886 RuntimeErrorDemo.java - SciTE

File" Edit Search \iew Tools Options Language Baffers Help

DOBX ae XDD AQAQAR BTO 6D

RumtimeErrarDemo.java

>javac RuntimeErrorDemo.java
>Exit code: 0
[>java -cp . RuntimeErrorDemo

>Exit code: 1

Statement to be executed before displaying the fifth element
Exception in thread "main” java.lang.ArrayIndexQutOfBoundsException: 5
at RuntimeErrorDemo.main{RuntimeErrorDemo.java:14)

Figure 10.4 : Output of the program shown in Figure 10.3

From the output shown in figure 10.4, we can notice that the program execution terminated abruptly
from line number 14. The output contains a phrase " ArraylndexOutOfBoundsException” that indicates
the type of exception occurred while executing the program.

Let us see few other cases that generate exceptions. For each type of exception, there are

corresponding Exception classes in Java.

The java.lang and java.io package contains a hierarchy of classes dealing with various exceptions.

Few widely observed exceptions are listed in Table 10.1.

Exception Class Condition Example
resulting in Exception
ArrayIndexOutOfBoundsException| An attempt to access the array | int a[] =new int[4];
element with an index valuethat | a[13] = 99;
is outside the range of array
ArnthmeticException An attempt to divide any inta =50/0;
number by 0
FileNotFoundException An attempt to access a
non-existing file
NullPointerException An attempt to use null ina String s =null;
case where an object is required | Systerm.out printin(slength());
NumberFormatException An attempt to convert string String s="xyz";
to a number type int i =Integer.parselnt(s);
Printer]OException An1/O error has occurred
while printing

Table 10.1 : List of few widely observed Excepfions

Exception handling in Java

205

Figure 10.5 shows one more program that generates an exception.

286 RuntimeErrorDemol. java - SciTE

File Edit Search View. Tools Options Language Buffers Help

DOBEX ae ¥XDD AQAQRKX BTO (8
funtimeEmorDemo2.java
1 /A program which generates run-time error. On dividing any number by zero generates ArithmeticException */
3 class RuntimeErrorDermno2
4 -1
5 public static vold main{String args[D
ol - {
7 int numerator = 15}
8 int denominator = 1;
9 int answer;
10
11 System.out.printin{"Statement to be executed before perfarming division aperation”);
12
13 /* Statement that generates run-ime error *f
14 answer = numerator / denominator; [/ Creates ArithmeticException
15
16 System.out.printin{"“Statement to be executed after perfarming division operation");
17 }
18 }

Figure 10.5 : A program illustrating arithmetic exception

In the program shown in figure 10.5 we try to divide an integer number by zero. A number when
divided by zero leads to infinity as a result. Here the program will be compiled successfully but
will generate unexpected output due to ArithmeticException. Figure 10.6 shows the output of the
execution of program.

286 RuntimeErrorDemo2.java - SciTE

File Edit Search View Tools Options Language Buffers H-.-:'|_:

DO ae ¥DODB AQA/AR BTO B8

RuntimeErmorDemo?. java

=javac BuntimeErrorDemol java

>Exit code: 0

=java -cp . RuntimeErrorDemo2

Statement to be executed before perfarming division operation

Exception in thread "main" Java.lang.ArithmeticException: / by zero
at RuntimeErrorDemo?.main{RuntimeErrorDemo?2.java:14)

=Exit code; 1

Figure 10.6 : Quiput of the code shown in figure 10.5

As we are trymng to perform 'division by zero', IVM will terminate the program immediately when
it encounters the statement that performs division operation.

Exception Handling

An exception is an error condition. Exception handling is an object-oriented technique for managing
errors. While performing exception handling, we try to ensure that the program does not terminate
abruptly nor does it generate unexpected output. In this section, we will learn how to handle the

exceptions.

Java uses keywords like try, catch and finally to write an exception handler. The keywords try,
catch and finally are used in the presence of exceptions, these keywords represent block of statements.

A try block contains the code that may give rise to one or more exceptions.

206 Computer Studies : 12

o
» A catch block contains the code that is intended to handle exceptions of a particular type that
were created in the associated try block.

¢ A finally block is always executed before the program ends, regardless of whether any exceptions
are generated in the try block or not.

Let us understand these blocks one after another in detail.
The try block

The try statement contains a block of statements within the braces. This is the code that we want
to monitor for exceptions. If a problem occurs during its execution, an exception is thrown. Each
type of problem (exception) corresponds to an object in Java. A try block may give rise to one
or more exceptions. The syntax of the try block is shown below :

try
{

// Set of statements that may generate one or more exceptions
}

Let us see the code that is placed within a try block; it creates a single exception, which we have
already seen earlier. The code shown in figure 10.7, when executed will terminate the program as
there is no exception handler. The part of program that may lead to runtime error must be written
within the try block.

88 & TryBlockDemo.java = SclTE

File Edit Search View Tools Optiens Language Buffers Help L]

DB X e XD AQAAKX BTFO 45
TryBlockDemao java
1 4 program which generates Tun-time error. Statement that generates run-time error is within try block =
2
3 class TryBlockDemo
4-4
5 public static vold maln{String args[))
6 - {
7 {* Create an array of four glements *
8 String cityiist[l = {"Ahmedabad”, "Barnoda®, "Hajkot", "Surat”"};
9
10 System.out.printin{"Statement to be executed before try”);
11
12 try
13 -
14 System.out.printin{"Statemeant within try block, before displaying the fifth elemant");
15
16 ™ Statement that generates run-time error *f
17 System.cut.printin{citylist[51);
18
19 System.out.printin{"Statermnant within try biock, after displaying the Nith elemeant™);
20 }
21
22 System.out.printin{"Statement to be executed after Ury block");
23
24
25
i=25 co=2 INS (LF}

Figure 10.7 : A Program that illustrates try block

On compiling the program shown in figure 10.7, it results in compilation error as there has to be either
a catch block or a finally block following the try block. The compilation error is shown in figure 10.8.

Exception handling in Java 207

286 TryBlockDeme.java - SciTE

File Edit Search View Tools Options Language Buffers Help

DOHX a0 XDD AQAQAX BFTO £

TryBlockDemo.java

I>javac TryBlockDemo.java

TryBlockDemo.java:12: 'try" without 'catch’ or 'finally'
try

1error

>Exit code: 1

Figure 10.8 : Compilation error in program shown in figure 10.7

The caich block

The catch block must immediately follow the try block. It contains the code that is to be executed
to handle an exception. The catch block is an exception handler, for a single try block there can
be one or more catch blocks. The syntax of the catch block is shown below:

try
{
// Set of statements that may generate one or more exceptions
}
catch(Exception_Type Exception_object)
{
/f Code to handle the exception
¥

A catch block consists of the keyword catch followed by a single parameter. The code to handle
exception has to be written between parentheses. The parameter identifies the type of exception
that the block is to deal with. Java supports various types of exceptions, in the later part of this
topic we will see how different type of exceptions can be handled by using multiple catch blocks.
Figure 10.9 illustrates mechanism of try-catch block.

try Block

Statements that may Cl'CﬂtCS Exception

cause exceptions of
different types

Exceptio ect Thrown

catch Block

Statements that Exception Hﬂ.ﬂdlel'

handles exceptions

Figure 10.9 : Exception Handling Mechanism

208 Computer Studies : 12

B """
WW

Let us see the example program that uses appropriate exception handler. For the sake of understanding,
we will handle ArrayIndexQOutOfBounds exception by just catching the object within catch block.
In the later sections of the chapter, we will see how the code can be handled to continue the execution
of program without termination.

2@ @& rTryCatchDemo.java - SciTE

Filp Edit Search View Tools Options Language Buffers Help

DOl ¥ ae XDD QAQA/RKR BATO 8
TryCarchDemn, java
1 -/ A program which ge s run-time error. Statement that generates run-time error is within
2 try block, there is a corresponding catch block immediately below the try block */
)
4 class TryCatchDemo
sl -
6 public static vold main{String argsll)
el - {
B8 /™ Create an array of four elements =/
9 String citylist[] = {"ahmedabad”, "Baroda®, "Rajkot”, "Surat™};
10 System.out.printin{"Statement to be executed hefore try");
11 try
I -
13 System.oul.printin{"sStatement wiLhin ry block, before dispiaylng the Nth element™);
14
15 J* Statement that generates run-time error %/
16 System.out.printin{citylistE57);
17
18 System.out.printin{"Statement within try block, after displaying the fifth element™);
19 }
20 catch{ArraylndexQutQfBoundsException eobj)
Y - {
22 System.out.printin{ “Within Catch Block");
23 System.out.printin{"Caught Exception object of type : " + eobj);
24
25 System.out.-printin{"Statement 1o be executed alter [ry...catch");
26
27 }
28 N
=28 Cu=2 IN5 (LF}

Figure 10.10 : A program that illustrates the use of try...catch blocks

The code shown in figure 10.10 will compile successfully and execute. In the program shown in
figure 10.10, line 16 contains statement that will generate exception. At line 16, we are trying to
access the fifth element of an array citylist[], however the array contains only four members. Our
program tries to access array element by specifying index position that is outside the range which
leads to an exception. When an exception occurs, an object of type ArraylndexOutOfBoundsException
is created and is thrown; a corresponding catch block handles the exception and does not allow
the program to terminate unexpectedly. The catch block contains a reference to object "eobj" which
was created and thrown by the try block. Figure 10.11 shows the output of the program.

8 ®® TrycatchDemo.java - ScITE

FAle Edit Search Wiew Tools Options Language Buffers Hedp

DOEX «aeé XDBE AQAQAR ATO BH

TryCatchDema. java

=javac TryCatchDemo.java

=Exit code: 0

=java -cp , TryCatchDemo

Statement to be executed before try

Statement within try block. before dispiaying the fifth element

Within Catch Block

Caught Excention object of type : java.lang.ArraylndexOutCfBoundsException: 5
Statement to be executed after try...catch

=Exit code: 0

Figure 10.11 : Ouiput of the program shown in figure 10.10

Exception handling in Java 209

— e
From figure 10.11, we can observe that the program did not terminate in the presence of exception.
The statement displaying "after try...catch” gets executed.

Multiple catch blocks

In a single program multiple exceptions can occur. For instance, if we want to upload particular
file to a remote computer, it may lead to two distinct exceptions - an exception may occur if the
file is not present in our computer or another exception may occur if the computer is not connected
to the network. There is a provision in Java to support multiple exceptions. As discussed before,
the code that may generate exception should be written within the try block; apart from this there
can be multiple catch blocks to handle each type of exception separately.

If the try block throws several different kinds of exceptions, we can write multiple catch blocks,
each handling a specific type of exception. This helps the programmer to write separate logic for
each type of exception. Figure 10.12 shows the use of multiple catch blocks.

try Bloek

Statemants that may
cause exceptions of Crutes EICCl]ﬂOD

different types

cateh Block1

Statementy that EXCCP[iO!J Haodler

handies exceptians of
Type1

caleh Black-2

Statements thot EXCCPUUIJ Handlex
handles excontions of
Type2

Figure 10.12 : Exception Handling Mechanism with Multiple catch Blocks

Figure 10.13 shows program where multiple catch blocks are used. Here two distinct exceptions are
generated within the try block. Exception of type ArrayIndexOutOfBoundsException will be caught by
the first catch block and exception of type ArithmeticException will be caught by the second catch block.

B8 8 MitipleCatchDema jave - 5ITE

Fil= Edif Search Wiew Taoks Opfiorm Langusge Pufess Help &
DOoOHE «ee XOH AAARXR BAFTD 6O
MultipleCatchDemo javs
1-m"47] which ge P)
2 an:
3
4 class MultipleCatchDamo
5-4
6 public statle vold main{String argsll)
i - {
B String cInist[] wm {"Ahmadabag”, "8arody”, “Ralkot?, YSyratty;
g Int numerator = 15, denominater = U, answer;
10 System.out.printin{”Statement to be executad befura try biook");
11 try
: {
13 System.out.printing " Beginiig of b _.r |uL'\).
14 System.out. prlntln(mtyhsl:i m; TayIindsxonrdl HoundeExcept
15 answer = numerator / denominalor g [k wles ArithmallcExcef
16 System.out,printlnd"End of try Siock.")s
17 ¥
18 - cateh{ArraylndexQuiQfBoundsException eabj) {
18 System.eut. printing"Viflthln Fral cotch block, exception cought =" + eobj);
20 }
21 - catch{ArithmeticException eob)} {
22 System.out.prinilnd "Within second cateh block, exception caught + eob));
23 }
24 - catch{Exception eobj) {
28 System.out.printind"Within last catch Llock, exception caunht ; " + eob)); JGenatic bloek
26 }
27 System.oyt.printin{*End of Frogram. "} |
28 }
29 }
12T =0 B L

Figure 10.13 : A program that illustrates use of multiple catch blocks

210 Computer Studies : 12

—
The last catch block can handle any type of exception. It is a kind of default catch block and
must be the last block when there are multiple catch blocks. While writing program, the order of
the specific catch blocks does not matter but the default block has to be placed at the end of
all catch blocks. For instance, in the program shown in figure 10.13 we can swap the occurrence
of catch blocks starting at line number 18 with the one starting at line number 21; however the
catch block given at line 24 must be the last block.

Multiple try blocks can be nested together but care must be taken to write a corresponding catch
block for each try block.

The finally block

The finally block is generally used to clean up at the end of executing a try block. We use a finally
block when we want to be sure that some particular code is to be run, no matter what exceptions
are thrown within the associated try block. A finally block is always executed, regardless of whether
or not exceptions are thrown during the execution of the associated try block. A finally block is
widely used if a file needs to be closed or a critical resource is to be released at the completion
of the program. The syntax of finally block is shown below:

finally
{
/! clean-up code to be executed last
/1 statements within this block always get executed even though if run-time errors
terminate the program abruptly

}

Each try block must always be followed by at least one block that is either a catch block or a
finally block. Figure 10.14 shows an example of using finally block.

288 FinallyDemo.java * S5ciTE

File Edit Search View Tools Options Language Buffers Help

DoAY ae XDD RAQAKX BHTFTO 285
FinallyDemo.java *
1 -/ A program which generates multiple run-time error. There is a fmally block following try block
2 ere gre noe catch blocks in this program =/
3
4 class FinallyDemo
5-{
6 public static wold main{String args[])
i - {
8 String citylist[] = {"Ahmedabad", "Baroda", "Rajkot”, "Sural"};
g Int numerator = 1%, denominator = 0, answer;
19 System.out.printin("Statement [0 be executed before try block");
11 try
12 - {
13 System.out.printin{"Beglning of try black...”);
14 System.out.printin{citylist[51); /' Cenecrates ArravindesOutOfMBoundcExeoptinn
15 answer = numerator / denominater ; // Generates ArithmeticExcepiion
16 System.out.printin{"End of try block..."};
17 }
18 finally
19 - {
20 System.out.printin{"This part of cade will always gel executed");
21 }
22
23 system.out.printin{"End of Program...");
24 }
25 1}

Figure 10.14 : Program which illustrates finally block without catch block

Exception handling in Java 211

.
In the program shown in figure 10.14, as there is no catch block, the program terminates abruptly
due to the exception generated at line 14; staterments present in line 15 and line 16 will not be

executed. However, in the presence of finally block, the program executes the statements within
the finally block before being terminated. The output of program is shown in figure 10.15.

2 88 Finallybemo.java - SciTE

File Edit S=arch view Tools Options Lanquage Buffers Help

DOHX a XDD AQAQX BATO GO

FinallyDeme. java

=javac FinallyDemo.java

»Exit code: O

|>java -cp . FinallyDemo

Statement to be executed before try block

Begining of try block...

This part of code will always get executed

Exception in thread "main” java.lang.ArraylndexOutOfBoundsException: 5
at FinallyDemo.main(FinallyDemo.Java:14)

>Exit code; 1

Figure 10.15 : The output of program shown in figure 10.14

Let us look at an example with multiple catch blocks and a finally block all used together. The
program shown in figure 10.16 contains all these blocks. It is a complete program with multiple
catch blocks for corresponding exceptions being generated within the try block. Output of program
is shown in figure 10.17.

28 8@ allslocksDemo.java - SciTE

File Edht Ssarch View Tools Options Languages Buffers Help
DOBHX a XDHD AQARAKX BWO 8
AllBlocksDemo.java

1 -/ A program which generates multiple run-time error. Thera are multiple catch blocks to handle various

2 particular Exceptons =/
3 class AllBlocksDemo
4-{
5 - public statlc vold main(String args[)) {
6 String cltylist[] = { Ahmedabad®, "Baroda”, "Rajkot", "Surat"};
7 int numerator = 15, denominator = 0, answer;
8 System.out.printin{"Statement to be executed befare try black");
gl -~ try {
10 System.out.printin{"Begining nfr ,r hm:k "3
11 System.out.printin{citylist[51); // = Inde \“"'Ih llﬁn undsException
12 answer = numerator / denommator ; I Generates ArithmeticException
13 System.out.printin{"End of try block...");
14 }
15 - catch({ArraylindexOutQfBoundsException eobj) {
16 System.cut.printin{"Within first catch block, exceplion caught : " + eobj);
17 }
18 - catch(ArithrneticException ecbj) {
19 | Systern.out.printin("Within second catch block, exception caught @ " + 20bj);
20 }
21 - catch{Exception eobj) {
22 System.out.printin{"WIithin last catch block, exceptlon caught : * + eobj); JGeneric block
23 }
24 - finally {
25 System.out.printin{"This part of code will always get executed™);
26 }
27 System.out.printin{"End of Program...");
28 }
29 }

i=19 €0=1 INS (LF}

Figure 10.16 : Program illustrating try, catch and finally blocks

212 Computer Studies : 12

2 0® AlBocksDemo,javs -
File Edit Sesth View Toals OpEicns

DG ae ¥XDO AQAL R BT O 28

AllBisdsDema java

>javac AllBlocksDemo.java

=>Exit code: 0

f>Java -cp . AlBlocksDemo

Statement to be executed befere try block

Begining of try block...

Within first catch block, exception caught : java.lang.ArrayindexOutOfBoundsException: S
This part of code will always get executed

End of Program...

>Exil code: O

Figure 10.17 : Output of the program shown in figure 10.16

From the output it is clear that the control of program execution switched from line 11 to the first
catch block, later it switched to the finally block. The last two catch blocks did not execute. Although
the program did not execute completely, it terminated gracefully.

A finally block is associated with a particular try block, and it must be located immediately following
any catch blocks for the corresponding try block. If there are no catch blocks, then the finally block
can be positioned immediately after the try block. If the finally block or catch blocks are not positioned
correctly, then the program will not compile.

The throw statement

The throw keyword is used to explicitly throw an Exception object. In the example programs that
we have seen so far, the JVM created an exception object and was throwing it automatically. For
example, an object of ArithmeticException was created when we tried to perform a divide by zero
operation and it was thrown automatically by the JVM.

Java does provide mechanism to create an Exception object and throw it explicitly. The object that
we throw must be of type java.lang. Throwable, {object of Throwable class or any of its sub-classes)
otherwise a compile error occurs. The syntax to throw an exception object is as follows:

throw exception_object;

When a throw statement is encountered, a search for matching catch block begins. Any subsequent
statements in the try or catch block are not executed. The code in figure 10.18 shows the use
of throw statement, its output is given in figure 10.19.

B8 8 ThrowDemo|avs * SciTE L3
Fle Edit Search View Tooks Options Larguage Buffers Help

Dol e OB AAGR RT S 88

o e a4

A program which u throw keyword to throw an exceptin ohject explicitdy =

1ass TnrowDemo

{ public static woid main{String args{])
- ey
1 System.out.grintin{"Before threweg an exception object...”);
[* Create an Exception object %/
Exception myabject = new Exception{"Demaonstralion of throw ")y
thraw myobject; / throw the sxception object sxplicitly

J* Statemants writton below throw will generatbe compile e orror =
[

catch(Exception eabi)

e O e
WERSGOUAEWNEOWLD AL A WA

o]
]

LSRN V] 1

Bl <
1

[

[

System.out.printind"Excaption caught 1 * + eobjl;
}

Figure 10.18 : Program which illustrates the use of throw keyword

Exception handling in Java 213

288 ThrowDemojava - SciTE

File Edit Search View Tools Optons Language Buffers Help

DOHY ad ¥XDBRE QQARKR BAFTO 28

TrwowDemo java

=javac ThrowDemo.java

>Exit code: 0

»java -cp . ThrowDemo

Before throwing an exception object...

Exception caught : java.lang.Exception: Demonstration of throw...
=Exit code; 0

Figure 10.19 : Output of the program in figure 10.18

In the program shown in figure 10.18, we have created an object "obj" of the class Exception,
the same object is thrown using throw statement. There has to be catch blocks to handle the exception
object thrown explicitly.

The throws Clause

We have explored the try-catch-finally blocks, the programs we discussed so far were simple programs
that didn't involve the use of methods. Few questions may arise like what will happen if an exception
occurs in a method or a constructor, where will we place the try-catch blocks. There are two alternate
approaches to handle exceptions created by a method :

» Write a try-catch block within the method or a constructor that may generate an exception
» Invoking a method (that may generate exception) or constructor within a try block

A throws clause can be used in a method declaration or constructor declaration to inform that the
code within the constructor or method may throw an Exception. It also signifies that there 1s no
catch block within the method that can handle the exception. When we write a constructor or a
method that can throw exceptions to its caller, it is useful to document that fact. The throws keyword
is used with the declaration of method.

A throws clause can be used in a method declaration as follows :

method_Modifiers return_type method_Name(parameters) throws Exception list... {

A method can throw multiple exceptions. Each type of exception that a method can throw must
be stated in the method header. For example, a method header can be like:

performDivision(} throws ArithmeticException, ArraylndexOutQfBoundsException

214 Computer Studies : 12

B """
T e e T TN OO OO STTsS

The program in figure 10.20 demonstrates the use of throws clause in the presence of user defined
methods. In the following code, it must be noted that if the method throws an Exception object,
there must be a matching catch handler. However if we are catching an exception type within the
method, there is no need to throw it.

286 ThrowsDemo.java * SciTE

File Edit Scarch View Tools Options Language Buffers Help
DOHE e ¥XDD AQAQAKX BATO GO
ThrowsDemao.java *
1 /™ A program which uses throws keyword to throw an exception from any method *
2
3 class ThrowsDemo
4-1
5 public statlc vold maln(string args(1)
6 - {
7 try
8
9 performDivision(); This mathod Siraws exception
10
11 catch{arithmeticException eobj)
12 -
13 System.out.printin("Exception caught : " + eobj);
14
15 }
16
17 / Method that throws ArithmeticException abject ®/
18
19 public static vald performDlvision() throws ArithmeTticException
20 - {
21 Int ans;
22 ans = 15/ 0;
23
24 '}

Figure 10.20 : Program which illustrates the use of throws keyword

In the program of figure 10.20, we have written a method performDivision(), an ArithmeticException
object will be generated in this method. The method performDivision() is called in the main() method
of our program. It is quite obvious that as there is no exception-handling mechanism within the
performDivision() method, the exception will be caught by calling method and there has to be a handler
in the calling method. Similarly, there can be exceptions within the Constructors of Java class.

Creating Custom Exceptions

Java allows creating our own exception classes according to application-specific problems. For
instance, we are writing a program to generate a mark sheet in which the user is asked to enter
marks of different subjects. The marks must be in the range of 0 te 100, suppose if the user enters
negative marks or the value is above 100 then the program must generate an Exception. Such kind
of exceptions are application specific, Java does not provide built-in exception classes for application
specific exceptions.

We can create user-defined exceptions by creating a subclass of Exception class. These exceptions
can be thrown explicitly using the throws statement. However it is required to catch this exception
and handle it accordingly. Let us see a program code that creates a custom exception to validate
the marks.

The program shown in figure 10.21 accepts input from the user. We have used java.util.Scanner
class to accept input from the keyboard in line number 21. The "nextInt()" method of the Scanner
class helps in reading integer input from the console. We will discuss the functionality of Scanner
class in the next chapter that deals with Files and 1/O.

Exception handling in Java 215

N A\ A\ O\ S\ N\
T e T Y N YT YT ST s

Here we have implemented two classes. An additional class is required to create a custom exception.
The class "InvalidMarksException" extends Exception class of java.lang package; it contains a single
parameter constructor that accepts string to describe the type of error.

&880 CustomExceptionDemol.java - SciTE

File pdil Sesich View Thols Opfions Language mslas Belp

DO e ¥XDD AQAARKX BTES 248
ListomErceptionDemod. java
1 * A program Lhal creates Cus 1 Exi f
A - E] | ton is a user defined class which s Inherited from java lang Exoepton class
3 Th s untill valid marks are entered®/
4
5 Import java.util.Scanner;
6
7 class InvalldMarksExceptlon extends Java_lang.Exception
8
Q publlc InvaligMarksExceptlon(Siring message}
10
11 super{message);
12
13 }
14
15
17 class CustomExceptionDemoz
18 -{
19 public static void main{String args[1)
20 - {
21 Scanner kbinput = new Scanner{System.in};
22 Int marks;
23 boolean continueloep = true;
24 - do
25 System.out.printin{"Enter the marks : "};
26 marks = kbinput.nextint();
27 System.out.printin{“You enlered " + marks);
28 try
29 - {
30 ifimarks < C || marks > 100) {
31 thirow new invalidMarksException{"Wrong marks..."y;) Throw Latapmieed Exception o]
32 }
=23 =~ alse {
34 System.out.println"Marks are Valid");
35
36 continueLaoop = false;
37 3}
38 catch{lnvalldMarksException eshb))
39
40 System.out.printn{“Exceplion CaLghL : * + ecbj);
41
42
43 whille{continueloop);
44 3
45 }
b= 26 rea= 100 0HS 11 FI

Figure 10.21 : User defined exception class

In the main method, the business logic is coded (application specific) that ensures whether the marks
are in range or not. If the marks are not in range, we create an object of type "InvalidMarksException"”
and throw it. There has to be a catch block to handle this exception. This program will not proceed
unless valid marks are entered. In case if the user enters invalid marks, he/she is asked to keep
on re-entering until the input is correct. It must be noted that try-catch blocks are used within a
do-while loop. The output of the code is shown in figure 10.22.

8 & Terminal

Wrong marks. ..

entered -47
1 caught : InvalldMarksException: Wrong marks. ..

Figure 10.22 : Output of the program shown in figure 10.21

216 Computer Studies : 12

o
Note: SciTE is an editor to type the programs. If the program accepts data from the keyboard,

it is advisable to execute the program at command prompt; however, a simple program that does
not require user interaction can be executed from within SciTE editor.

Advantages of Exception Handling

Throughout the chapter, we have advocated the use of exception handling in Java programs. By
now, it must be clear that a good program must always handle exceptions rather than the program
being terminated abruptly. Let us briefly look at the advantages of using exception handling in our
Java programs. Few advantages of using exception-handling in Java programs are listed below:

» It allows us to maintain normal flow of program. In the absence of exception handling, the flow
of program is disturbed.

» [t allows writing separate error handling code from the normal code.
= Error types can be grouped and differentiated within the program.
s Assertions can be used to debug the program before deploying it to the clients.

o [t provides an easy mechanism to log various run-time errors while executing the program.

Summanry

In chapter we learnt that a program can use exceptions to indicate that an error occurred. A
program can catch exceptions by using a combination of the try, catch, and finally blocks.

To throw an exception, we use the throw statement and provide it with an exception object (subclass
of java.lang. Throwable class). A method that throws an uncaught, checked exception must include
a throws clause in its declaration, The try statement should contain at least one catch block or
a finally block and may have multiple catch blocks. Assertions are used to check that something
should never happen; they are used by programmers for debugging purpose.

RITSH

What is the difference between compile-time error and run-time error ?
What is an Exception ? Give examples of few Exceptions found in Java.
How are the exceptions handled in java ?

What 1s the significance of try, catch and finally block ?

What is the use of throw and throws keyword ?

ol o O

w

How do you create a custom Exception ?

"l

Choose the most appropriate option from those given below :

') Which of the following refers to an error condition in object-oriented programming
terminology ?

(a) anomaly (b) abbreviation

(c) exception (d) deviation

Exception handling in Java 217

B s S S """ =
= S e T T T N N N

218

') Which of the following is a correct word for all Java Exceptions ?

(a) Errors (b) Runtime Exceptions
(c) Throwables (d) Omissions

(3] Which of the following statements is true ?

(a) Exceptions are more serious than Errors.
(b) Errors are more serious than Exceptions.
(c) Errors and Exceptions are equally serious.

(d) Exceptions and Errors are the same thing.

‘) Which of the following elements is not included in try block ?

(a) the keyword try (b) the keyword catch

(c) the curly braces (d) statements that might cause Exceptions

) Which of the following block handles or takes appropriate action when an Exception occurs ?

(a) try (b) catch
(c) throws (d) handles

(6) Which of the following should be within a catch block ?

(2) finally block (b) single statement that handles Exception
(c) any number of statements to handle Exception

(d) throws keyword

(7) 'What will happen when a try block does not generate an Exception and you have included

multiple catch blocks ?
(a) they all execute (b) only the first matching one executes
(€) no catch block executes (d) only the first catch block executes

() Which of the following is an advantage of using a try...catch block ?

(a) Exceptional events are eliminated
(b) Exceptional events are reduced
(c) Exceptional events are integrated with regular events

(d) Exceptional events are isolated from regular events

(9) Which of the following methods can throw an Exception ?

(a) methods with throws clause (b) methods with a catch block
(c) methods with a try block (d) methods with finally block

Computer Studies : 12

—Z e e R
(10) Which of the following is least important to know if you want to be able to use a method
to its full potential ?
(a) the method's retumn type
(b) the type of arguments the method requires
(c) the number of statements within the method

(d) the type of Exceptions the method throws

1. Write a java program that uses a method - "add(})", to add the elements in an array, include
a try block within the method, so that the method must handle ArrayIndexQutOfBoundsException.

2. In the above example, remove the try...catch block from the method. By using the throws
keyword, the method that invokes "add()" method must handle the exception.

3. Write a java program that throws and catches an ArithmeticException when you atterapt to
take the square root of a negative value. Prompt the user for an input value and try the
Math.sqrt() method on it. The application either displays the square root or catches the thrown
Exception and displays an appropriate message. Save the file as SqrtException.java.

4. Write a java program to validate the birth date. Create a custom exception
"InvalidBirthDateException". Ask the user to enter any date, if the birth date is after the current
date then throw the "InvalidBirthDateException", also write a suitable code to handle such
Exceptions.

5. Write a java program to simulate bank transactions. Take two variables, balance Amount and
withdrawAmount. Program must assert 1f the withdrawAmount is less than balance Amount.

6. Write a java program to simulate bank transactions. Take two variables, balance Amount and
withdrawAmount. Create a custom exception, "InvalidTransaction", your program must throw
the "Invalide Transaction" exception if the withdrawAmount is less than balanceAmount. Write
appropriate handlers for this Exception.

7. Write a java program to validate the birth date. Create three different custom exceptions like
"InvalidDateException”, "InvalidMonthException" and "InvalidYearException". Throw
"InvalidDateException” if the date is negative or greater than 30, throw "InvaidMonthException”
if the month is negative or greater than 12, throw "Invalid YearException" if the year is below
1950 or after the current year.

Exception handling in Java 219

