||||| 8 Advanced Scripting

In chapter 7 we learned how to use the Vim editor and also saw how to write the basic shell
scripts. We mentioned that the shell scripts have features similar to a higher level language. Are
we then learning a new language? No, we are not learning any new language at all. We are learning
one of the best feature that an open source OS provides. The shell scripts are used for routine
system administration tasks. They are the best tools an administrator can get to easily monitor and
control his systems even if he is at remote location. The shell scripts designed so far were sequential
in nature; the commands were executed in the same order in which they appeared in the script.
While performing administrative tasks, we may need to perform execution of some statements
repeatedly. We may also need to skip execution of some statements based on predefined conditions.
In this chapter we will see some scripts related to system administration and discuss how to use

decision statements and looping constructs in shell script.
Finding Process Id

In Linux all programs (executables stored on hard disk) are executed as processes (a program loaded
into memory and running). Each process when started has a unique number associated with it known
as process id (PID). We can perform operations like view or stop a process. To see the processes
associated with the current shell we can issue the ps command without any parameters. We can
view the process of all the users by using the ps -ef command. Figure 8.1 shows the processes

running on our system.

File Edit View Terminal Help

administrator@ubuntu:~% ps -ef
uID PID PPID STIME
root | B © 15:14
root 15:14
root 15:14
15:14
15:14
15:14
15:14
15:14
15:14
15:14

=

CMD
/sbin/init
[kthreadd]
[migration/8]
[ksoftirgd/e]
[watchdog/8]
[migration/1]
[ksoftirgd/1]
[watchdog/1]
[events/0]
[events/1]

p.
3
root 4
root 5
root
root
root
root
root

= mwd el end el md el el el

Figure 8.1 : List of processes

Table 8.1 gives the meaning of some of the columns listed in figure 8.1.

158 Computer Studies : 11

Column Name Description

UID Name or number of the user who owns the process.

PID A unique numeric process identifier assigned to each process.

PPID Identifies the parent process id, the process that created the current process.
STIME The start time for the current process.

TTY Identifies the terminal that controls the current process.

TIME Identifies the amount of CPU time accumulated by the current process.
CMD Identifies the command used to invoke the process.

Table 8.1 : Explanation of columns displayed in ps —ef command

Many times an administrator needs to find how many processes a particular user is
executing. Let us write a script that helps administrator find number of process run by a particular
user.

#Script 10: Script to find out how many processes a user is running.

clear

echo -n "Enter username: "

read usrname
cnt="ps -ef |cut-d" " -f1| grep -o Susrname | we -w’

echo "User Susrname is running $cnt processes."

Save the script as script]0.sh. Let us try to understand the working of this script. The first command
clears the content on the screen. Then a message is displayed for the user to enter a user name.
The read command then assigns the string read from the keyboard to variable usrname. Then we
have combined four commands namely ps, cut, grep and we using pipe. The ps -ef command displays
list of processes being run by all the users of the system. Its output is then given to the cut command.
The cut command extracts the first field (username) from this output. The extracted list of first field
is then given to the grep command. The grep command finds all the users that match with the value
that is extracted from variable usrname. This matched list is then given to the we command that
counts the occurrence of the given word (username). Finally this word count is assigned to variable
cnt. The last command then displays the actual output needed. Figure 8.2 shows the sample output
of the script.

Advanced Scripting 159

File Edit View Terminal Help

Enter username: root
User root is running 183 processes.
administrator@ubuntu:~%

Figure 8.2 : Qutput of Script 10

As mentioned earlier we may remove a process and release some memory space if so required.
To remove the process from memory we use the kill command. For example if we issue a command

$kill -9 101

Then the process with PID=101 will be forcibly removed from the memory. Let us have a look
at script similar to script10.sh that accepts user name as a command line argument and tells us
how many terminals that user is using. The code of the script is given in the box below:

#Script 11: Script to find out how many terminals a user has opened.
cnt="who | cut -d " " -f 1| grep -0 $1 | we -w’

echo "User $1 has opened $cnt terminals"

Save the script as scriptll.sh. Observe that the script we created in the previous example used
variables. In this script we have made use of a command line argument. The entity $1 here refers
to a command line argument. To execute this script type the command as mentioned below:

$sh scriptll.sh administrator

You must have observed that the script is executed in the similar manner as we have executed the
previous script. But here we have specified additional value “administrator” (readers may specify
any name of their choice). Linux stores the values provided through command line in dollar variables,
named $1, $2, $3 and so on. First argument will be stored in $1, second in $2, third in $3 and
so on till $9. These arguments are known as command line arguments. The output of the script
is shown in figure 8.3.

File Edit View Terminal Help

administrator@ubuntu:~% sh scriptll.sh administrator
User administrator has opened 2 terminals
administrator@ubuntu:-~%

Figure 8.3 : Output of Script 11

160 Computer Studies : 11

Let us try to understand the working of this script. In the first statement after comment we have
combined four commands namely who, cut, grep and we using pipe. The who command displays
list of all users that have logged into the system. Its output is then given to the cut command. The
cut command extracts the first field from this output. The extracted list of first field is then given
to the grep command. The grep command then finds out all the users that match with the entered
command line argument value ($1 = administrator). This matched list is then given to the we command
that counts the occurrence of the given word (username). Finally this word count is assigned to
variable cnt. The last command then displays the actual output needed.

Decision Making Tasks

Let us say an administrator wants to create a directory, he can do it using an mkdir command.
But if he uses a script for creating a directory he can generate appropriate messages also. Let us
write a script that allows an administrator to create a directory.

#Script 12: Script to create a directory with appropriate message.

echo -n "Enter directory name: "

read mydir
if [-d Smydir -o -f Smydir |
then
echo "A File or Directory with the name $Smydir already exists''.
exit 0
fi
mkdir $Smydir

echo ""Directory with name $mydir created successfully."

Save the script as scriptl12.sh. Observe that in this script we have used an if-then-fi construct. This
construct in shell scripts allows us to perform decision making. The if statement of Linux is concerned
with the exit status of a test expression. The exit status indicates whether the command was successfully
executed or not. The exit status of command is 0 if it has been executed successfully; otherwise
it is set to 1. Figure 8.4 shows the output of the script.

File Edit View Terminal Help

administrator@ubuntu:~% sh scriptl2.sh

Enter directory name: subject

A File or Directory with the name subject already exists.
administrator@ubuntu:~$%$ sh scriptl2.sh

Enter directory name: script dir

Directory with name 5cript_dfr created successfully.
administrator@ubuntu:~$%

Figure 8.4 : Output of Script 12

Advanced Scripting 161

Observe the output of figure 8.4 carefully. In one case we get message indicating that the directory
already exists and in second case we are able to create a directory with the specified name. Note
that the condition in the above script is enclosed in a square bracket. There should be one space
after opening square bracket and one before closing square bracket. If the condition is evaluated
to true then statements typed inside then block will be executed otherwise not. The end of the
if statement is indicated by fi statement. Also note that the then keyword should be typed below
if statement else we will get error. The -d, -f -0 options used in the script will be discussed later

in the chapter.
We can use the following four decision making instructions while creating a shell script in Linux:
if-then-fi
if-then-else-fi
if-then-elif-then-else-fi
case-esac

It is a normal practice to copy a file and keep in it another directory (maybe for the purpose of
backup). The user many times gets confused whether both the files are same or different. Let us
write a script that helps user compares such files. The script when executed compares both the
files using the cmp command. Based on the output of the cmp command it then displays appropriate

messages.

#Script 13: Script to compare files.
echo -n "Enter a file name: "
read fname
if cmp ./$fname ./backup/$fname
then
echo ""$fname is same at both places."

else

echo "Both $fname are different."

Save the script as script13.sh. Here we first accept a file name from the user. To keep the script
simple as of now we have used absolute paths for directory (user can convert it relative path).
We have also assumed that the file names at both the locations are same. Figure 8.5 shows the

output of the script.

162 Computer Studies : 11

File Edit View Terminal Help

administrator@ubuntu:~$ sh scriptl3.sh

Enter a file name: address.tixt

address.txt is same at both places.

administrator@ubuntu:~$ sh scriptl3.sh

Enter a file name: address.ixt

./address.txt ./backup/address.txt differ: byte 398, line 6

Both address.txt are different.
administrator@ubuntu:~%

Figure 8.5 : Output of Script 13

Here we have executed the script twice. In the first run both the files contents are same hence
we get the message that both files are same. Before second run we have modified the file in the

current directory hence we are getting the message that files are different.

In previous chapter we have written a small script to welcome the user that has logged in the system.
Let us modify it further so that we display a proper welcome message (Good morning, Good afternoon
or Good evening depending on the time the user has logged in).

#Script 14: Script to display welcome message to the user.
clear

hour=" date +"%H"'"

usrname=who am i |cut -d " " -f I
if [Shour -ge 0 -a Shour -It 12 |
then

echo "Good Morning Susrname, Welcome to Ubuntu Linux Session."
elif [Shour -ge 12 -a Shour -It 18 |
then
echo "Good Afternoon Susrname, Welcome to Ubuntu Linux Session."
else

echo '""Good Evening Susrname, Welcome to Ubuntu Linux Session."
fi

Figure 8.6 shows the output of the script. The output will vary depending on when the user has
logged in.

Advanced Scripting 163

File Edit View Terminal Help

Good Afternoon administrator, Welcome to Ubuntu Linux Session.
administrator@ubuntu:-~%

Figure 8.6 : Output of Script 14
The test command

It is possible to use different forms of if statements. Linux also provides test command which can
be used in place of square brackets used in previous scripts. Let us write script to check whether
a user has created more than some specified files in a given month or not.

#Script 15: Script to see whether user has created more than specified files in a month.
clear

cnt="lIs -1 | grep -¢ [-]"$1'"

echo -n "Enter number of files: "

read nfile
if test Scnt -gt Snfile
then
echo "You have created more than $nfile files in the month of $1"
else

echo ""You have not created more than Snfile files in the month of $1"

fi

Let us try to understand the script. Here we have defined a variable named cnt. This variable is
assigned the total count of the files created in a specified month. To find out the number of files
we have used two commands namely /s and grep. The Is -1 command is used to display details
of files and directories. Its output is then given to the grep command that matches regular expression
[-]”$1". The month is specified as two digit numeric value and accepted through command
line argument assigned to $1. Then we have defined a variable nfile that stores the value of
number of files that we want to compare with. The -gt option in the test indicated greater
than comparison. Here we are checking whether the value of cnt is greater than the value of
nfile or not. If the value of cnt is greater than the value of nfile we print the message “You have
created more than $nfile files in the month of $1”, where $nfile and $1 are replaced with
appropriate values. Otherwise we print message “You have not created more than $nfile files in
the month of $17.

164 Computer Studies : 11

Figure 8.7 shows the output of the script when we issue a command shown below on the command

prompt.

$sh scriptl5.sh 02

File Edit View Terminal Help

Enter number of files:

You have created more than 18 files in the month of 82

administrator@ubuntu:-%

10

Figure 8.7 : Output of Script 15

The if statement can work with numerical values, strings and files. In turn the tests performed are

known as numerical test, string test and files test respectively. Observe that we have used options

like -d, -f, -0, -a, -ge, -1t and -gt in the scripts created so far. All these options allow us to perform

various types of condition matching.

Relational Operators

The numerical test is performed using relational operators. The options -ge, -It and -gt

refers to relational operators. These operators are used to compare values of two numeric

operands. Table 8.2 lists the relational operators that can be used in shell scripts along with

their usage.
Operator Usage
-gt greater than
-It less than
-ge greater than or equal to
-le less than or equal to
-ne not equal to
-eq equal to

Table 8.2 : Relational operators

Logical Operators

For taking precise and appropriate decisions many times a user needs to combine one or more
conditions. To combine conditions we make use of logical operators. Table 8.3 lists the logical

operators along with their usage.

Advanced Scripting

165

Operator| Usage | Minimum conditions

that can be combined Output
-a AND Two True if both conditions are true, false otherwise
-0 OR Two True if any one condition is true, false only if both

conditions are false

! NOT One Converts true to false and vice versa

Table 8.3 : Logical Operators
File Operators

It is also possible to use if statement to check the status of file or a directory. Similar to the relational
operators we have file operators that allows us to check the status of a file. These operators are
used as a condition within the if statement. By using file operators we can come to know whether
a specified name is an ordinary file or a directory. We can also find out the status of file permissions

using them. Table 8.4 lists usage of these options.

Condition Tested Output
-s name True if a file with the specified name exists and has size greater than 0.
-f name True if a file with the specified name exists and is not a directory.
-d name True if a directory with the specified name exists.
-r name True if a file with the specified name exists and the user has read

permission on it.

-W name True if a file with the specified name exists and the user has write

permission on it.

-X name True if a file with the specified name exists and user has execute

permission on it.

Table 8.4 : File test conditions

Many times administrator needs to find whether a specified file has size equal to zero or not.
He can then perform maintenance operations like delete the file in case its size is zero. He
may additionally need to find whether write permissions on the file is set or not. Let us write
a script that allows administrator to check the file size and know what permissions are allocated
to the file.

166 Computer Studies : 11

#Script 16: Script to check file size.
echo -n "Enter a file name: "

read fname

if [-s $fname -a -w $fname |

then

echo $fname has size greater than 0 and user has write permission on it.
else

echo $fname has size 0 or user does not have write permission on it.

fi

Save the script as scriptl6.sh. Here the statement if [-s $fname -a -w $fname | has multiple
conditions. The result of the if statement is evaluated when both the conditions give us some output.
Table 8.5 lists the value that can be generated as output when the if statement is evaluated and
figure 8.8 shows different output of the script.

-s $fname Reason -w $fname Reason if [-s $fname -a -w $fname]
False File size = 0 or False | Write permission False
File does not exists not set
False File size = 0 or True Write False
File does not exists permission set
True File size > 0 False | Write permission False
not set
True File size > 0 True Write True
permission set

Table 8.5 : Outputs of if [-s $fname -a -w $fname |

File Edit View Terminal Help

administrator@ubuntu:~% sh scriptl6.sh

Enter a file name: script5.sh

script5.sh has size © or user does not have write permission on it.
administrator@ubuntu:~% sh scriptl6.sh

Enter a file name: scriptl®.sh

scriptl®.sh has size greater than © and user has write permission on it.
administrator@ubuntu:~%

Figure 8.8 : Output of Script 16

Advanced Scripting 167

The if-then-fi and if-then-else-fi statements used so far allow us to test limited set of conditions.
In case a user needs to perform more number of tests these statements may not be of much help.
In such cases we may use the if-then-elif-then-else-fi or the case statement.

Let us write a script that accepts three files from user and displays the file which has maximum
size.

#Script 17: Script to find the file with the maximum size.
clear

echo -n "Enter name of first file: "
read fnamel

echo -n "Enter name of second file: "
read fname2

echo -n "Enter name of third file: "

read fname3

fsizel="we -¢ $Sfnamel | cut -d " " -f I
fsize2="we -¢ $fname2 | cut -d " " -f I
fsize3="wc -¢ $fname3 | cut -d " " f 1"

echo Size of $fnamel = Sfsizel

echo Size of Sfname2 = $fsize2

echo Size of $Sfname3 = $fsize3

if [$fsizel -eq S$fsize2 -a $fsizel -eq $fsize3 |
then

echo "All files have same size"
elif | $fsizel -gt Sfsize2 -a Sfsizel -gt $fsize3 |
then
echo '"$fnamel has maximum size."

elif | $fsize2 -gt Sfsizel -a Sfsize2 -gt $fsize3 |

then

echo "$fname2 has maximum size."
else

echo "$fname3 has maximum size."
fi

168 Computer Studies : 11

Save the script as scriptl7.sh. The six statements after the clear command are used to accept the

file names from the user. The next three statements calculate size of the files, later these sizes are

displayed to the user. Finally using the if condition, the script finds out the file that has maximum

size. Figure 8.9 shows the output of the script.

File Edit View Terminal Help

Enter name of first file: script7?.sh
Enter name of second file: script8.sh
Enter name of third file: script9.sh
Size of script7.sh = 179
Size of script8.sh = 194

Size of script9.sh = 215
script9.sh has maximum size.
administrator@ubuntu:~$%

Figure 8.9 : Output of Script 17

The case statement

The if-then-elif-then-else-fi statement looks clumsy as number of comparison grows. The alternate

option for checking such conditions is to use a case statement. Let us write a script that

allows us to accept a choice from the user and perform different file operations based on the

entered choice.

Script 18: Script to perform various file and directory operations.

echo
echo
echo
echo
echo
echo
echo

read

"

"1 - Display Current Dir

"2 - Make Dir "
"3 - Copy a file "
"4 - Rename a file "

"S - Delete a file "
"0 - Exit "
-n "Enter your choice [0-5] : "

choice

case Schoice in

1)

echo SPWD

.o
99

Advanced Scripting 169

2)
echo -n "Enter name of the directory to be created: "
read dname
if [-d $dname |
then
echo '"Directory with the name $Sdname already exists."
exit 0
else
mkdir $Sdname
echo '"Directory $Sdname created successfully."
fi
5
3)
echo -n "Enter source file name : "
read sfile
echo -n "Enter destination file name : "
read dfile
cp -u Ssfile Sdfile
5
4)
echo -n "Enter old file name : "
read oldf
echo -n "Enter new file name : "
read newf
mv $oldf $newf
55
)
echo -n "Enter file name to delete : "

read fname

rm $Sfname

.o
29

170

Computer Studies : 11

0)
exit 0
35
)
echo "Incorrect choice exiting script."

esac

Save the script as scriptl8.sh. Observe that for each operation that we need to perform we have
written different section. When a user enters a numeric value between 0 and 3, it is assigned to
the variable choice. The case statement extracts the value of variable choice, the control is transferred
to the section with a matching value specified before the closing round brackets. All the statements
written within that section are executed till two semicolons (;;) are encountered. Once these semicolons
are encountered the control is transferred to the line after the end of the case statement. The end
of case statement is specified by esac keyword. The shell then starts executing statements written
after the end of case statement.

If user enters any value that does not match any of the case value specified, then the control is
transferred to the section that has asterisk (*) as its value. If specified, this section allows a user
to exit the script or perform additional processing after displaying an appropriate message. Figure
8.10 shows us different output of script 18.

File Edit View Terminal Help

administrator@ubuntu:~% sh scriptl8.sh
- Display Current Dir

Make Dir

Copy a file

Rename a file

Delete a file
B - Exit
Enter your choice [@-5] : 1
Jhome/administrator
administrator@ubuntu:~$% sh scriptl8.sh

- Display Current Dir

Make Dir

Copy a file

Rename a file

Delete a file
B - Exit
Enter your choice [@-5] : 2
Enter name of the directory to be created: LinuxScript
Directory with the name LinuxScript already exists.
administrator@ubuntu:~$%

Figure 8.10 : Output of Script 18

Advanced Scripting 171

The syntax of case statement is:

case variable name in
valuel)
Command1

Command 2

value 2)
Command 1

Command 2

*)
Command 1

Command 2

2

€sac

Note :

We can assign numeric, character or string values to the variable that accepts the choice.
In case we assign string values then within the case it should be enclosed between single
quotes. For example if we accept string abc then within the case statement it should be
mentioned as ‘abc’.

Handling Repetition

Cleaning of disk space is a normal operation that the administrator needs to perform. Let us write
a simple script that assists the administrator in finding zero sized file and delete it. The script to
perform the operation is given below:

#Script 19: Script to delete zero sized files.
echo -n "Enter directory name : "
read dname

if [! -d $Sdname |

then

echo Directory $Sdname does not exist.

172 Computer Studies : 11

else

ctr=0

for i in “find "$dname/" -type f -size Oc’
do

rm $i

echo File Si" : deleted"

ctr="expr Sctr + 1°

done

if [Sctr -gt 0]

then

echo "Sctr zero sized files have been deleted."
else

echo "No zero sized files present in directory."

Observe that in this script we have used a statement for i in ‘find “Sdname/” -type f -size Oc‘.
This statement is used to repeat some actions again and again. Figure 8.11 shows the output of
script 19.

File Edit View Terminal Help

Enter directory name : LinuxScript
File LinuxScript/test : deleted
File LinuxScript/testl : deleted
File LinuxScript/test2 : deleted

3 zero sized files have been deleted.
administrator@ubuntu:-%

Figure 8.11 : Output of Script 19

While writing scripts for certain tasks we may require performing an action multiple times. The process
of repeating the same commands number of times is known as looping. Linux provides three keywords
namely for, while and until that can be used to perform repetitive actions.

In script 19 we have used for statement. The for loop allows us to specify a list of values in its
statement. The loop is then executed for each value mentioned within the list. The general syntax
of for statement is shown below:

Advanced Scripting 173

for control-variable in valuel, value2, value3.....
do

command 1

command 2

command 3
done

Another activity that administrator regularly performs is taking backup of files. Let us say he needs
to take backup of particular type of files. In such a case, taking backup of one file at a time does
not make sense. Creating an exact copy at another location will also waste storage space. In such
cases an administrator can use a script that first creates a backup directory in the folder
where the files are located. Then the files which needs backup are copied into it. The directory
is then compressed and finally moved to a new location. The script written below performs
this action.

#Script 20: Script to backup and compress desired files from current location.
clear
dat="date +"%d_%m_%Y'"
bdir=backup_$dat
if [! -d Sbdir |
then
mkdir $bhdir
else
echo "Directory with name $bdir already exist."
exit 0
fi
echo -n "Enter the extension of the files to backup: "
read fextn
ctr=0
for i in ‘Is -1 *.$fextn
do
cp $i ./Shdir
ctr="expr Sctr + 1°

done

174 Computer Studies : 11

if [Sctr -gt 0 |
then

tar -czf $hdir.tar S$bdir

cd Sbdir

rm -r *.*

cd ..

rmdir $bhdir

echo "All files with extension .$fextn stored in Sbdir.tar"
else

rmdir $bhdir

echo "No files with the extension found."

fi

Save the script as script20.sh. Let us understand how the script works. Initially we have defined
two variables namely dat and bdir. The dat variable is assigned the value of current date in the
specified format. For example if the current date is 21 February 2013, then variable dat will be
assigned value 21 02 2013. The variable bdir is then assigned value backup 21 02 2013. Then
we check whether such a directory exists or not. If it does not exist we create this directory otherwise
we exit with the message saying that the directory already exists. If we create a directory then we
ask the user to enter a file extension. The script looks for the files with specified extension in the
current directory and if found copies them in the backup directory. Once all files are copied, the
backup directory is compressed (packed) using the tar command. The tar -czf $bdir.tar $bdir
statement performs this operation. Here we create a tar file named backup currentdate.tar. Then
we empty the contents of the backup directory and delete it. In case we do not find any files with
the extension specified we display appropriate message. The administrator if he wants now can move
the compressed tar file to the location he desires. We can uncompress the tar file by using the
command tar -xvf filename.

Repetition: while statement

We can also use the while statement for looping. It repeats the set of commands specified
between keywords do and done statements as long as the condition specified as an expression
is true. Let us write a script that allows administrator to remove a specified number of files
from a directory.

#Script 21: Script to delete specified number of files from a directory.

clear

echo -n "Enter the name of directory from where you want to delete: "

Advanced Scripting 175

read dname
if [-d Sdname |
then
cd Sdname
echo -n "Enter the number of files you want to delete: "
read fdel
ctr=1
while [Sctr -le $fdel |
do
echo -n "Enter the name of the file to be deleted: "
read fname
if [-f $fname |
then
rm $fname
echo "$fname deleted successfully."
else
echo "File with name $fname not found."
fi
ctr="expr Sctr + 1
done
else
echo '"Directory Sdname does not exist."
fi
cd ..

Save the script as script21.sh. Let us understand how the script works. Initially the user is prompted
to enter a directory name. The dname variable is assigned this value. Then we check
whether such a directory exists or not. If it exists we change to that directory and ask user the
number of files he wants to delete. Then we start a while loop that finds the files to be deleted.
If the file is found we delete it else we display a message indicating file not found. The loop is
continued till the value of variable ctr is less than or equal to the number of files specified by the
user. Once the operation is over we go back to the parent directory. The syntax of while loop
is shown below:

176 Computer Studies : 11

while [test condition |
do
command or set of commands

done

Repetition: until statement

Another method to execute repetitive statements is to make use of the unti/ statement. The until
loop is similar to the while loop. However, the until loop executes till the condition is false and
the while loop executes till the condition is true.

So far, we have seen how we can use decision-making and looping constructs to write shell scripts.
Script 19 is an example of shell script which uses some of the constructs discussed above. It is
a menu driven script demonstrating until-loop, to display list of files in a current directory, changing
password, displaying current date and time and searching a word from a file.

#Script 22: Script to perform operations till user decides to exit.
choice=y

until | Schoice = n |

do

clear

Ll 1 11 TR "

echo " Choose an option from menu given below "
€CHO M eaae e "

echo "a: List of files and directories in a current directory."

echo ""b: Display current working directory"
echo '"c: Display current date and time"

echo '"d: Searching a word from file"

echo "e: Exit"
echo " "
RO Maeeeeeeeeeeeiiceeereeeeeneessnsseeseeessssssssssssssesssssassnssessesesssssnnsnnss "

echo -n "Enter your choice [a-e]: "
read ch

case Sch in

a)

Advanced Scripting 177

Is -1

3

b)

echo ""You are working in ‘pwd™"

5

¢)

echo "Current date and time is is "date™"

5

d)

echo -n "Enter the word to be searched: "
read word

echo -n "Enter the file name from which the word is to be searched: "
read file

if [-f $file |

then

grep Sword $file

else

echo -n ""File with name S$file does not exist."

fi

.o
29

exit

3

*)

echo "Incorrect choice, try again.."

3

esac

echo -n "Do you want to continue? : "
read choice

done

178 Computer Studies : 11

Save the script as script22.sh. When user executes the script he will be shown a menu and asked
to enter a choice. Depending on the choice entered an action from the case will be executed.
Enter different choice each time and see the output. The script will keep on executing till user
enters e as a choice in which case the exit statement within the case is executed or he enters
n when the question “Do you want to continue?” is asked. Figure 8.12 shows the output of
script 22.

File Edit View Terminal Help

: List of files and directories in a current directory.
: Display current working directory

: Display current date and time

: Searching a word from file

Enter your choice: [a-e]

Current date and time is is Fri Feb 22 14:36:21 EST 20813
Do you want to continue? : n

administrator@ubuntu:~%

Figure 8.12 : Output of Script 22
Functions in script

Linux shell script also provides us the feature of creating functions. Functions are small subscripts
within a shell script. They are used make the scripting more modular. Using functions we can improve
the overall readability of the script. The function used in shell script do not return a value, they
return a status code. Let us see one script that assists the user in finding out how many files were
created on current date or when a particular file was last modified.

#Script 23: Script to show use of function.
file_today(){
cur_date="date +'%Y-%m-%d"
cent="Is -l tr | grep "Scur_date" | we -I'
echo "Current date is : "Scur_date

echo "No. of files created today : '"Scnt

Advanced Scripting 179

modified today(){

if [-f"S$1"]

then

stat -¢ %y "S$1"

else

echo ""$1" does not exist"
fi

j

choice=y

until [S$choice = n |

do

clear

LT 1 T TP "

echo " Choose an option from menu given below "
LT 1 T TR "

echo "a: List of files created today."

echo '"b: Display last file modification date."
echo "c: Exit"

echo
ECRO Mt ssse e ssaeees
echo -n "Enter your choice [a-c]: "

read ch

case Sch in

a)

file_today

5

b)

echo -n "Enter a file name: "

read fname

modified today $fname

.o
29

180 Computer Studies : 11

exit

5

*)

echo "Incorrect choice, try again.."
5

esac

echo -n "Do you want to continue? : "

read choice

done

Save the script as script23.sh. Observe that in script 23 we have used two functions namely
file_today() and modified today(). The opening and closing parenthesis after a variable name indicates
that it is a function. When user enters a, function file today() that contains code for finding the
files created on a current date is called and executed. Similarly when user enters b he is prompted
to enter a file name. This name is then passed to function modified today() that checks if the files
exists or not. If the file exists its last modification date is displayed otherwise appropriate message
is displayed. Figure 8.13 shows the output of script 23.

File Edit View Terminal Help

a: List of files created today.
b: Display last file modification date.
E:

Enter your choice [a-c]: a
Current date is : 2813-82-22
No. of files created today : 12
Do you want to continue? : n
administrator@ubuntu:~%

Figure 8.13 : Output of Script 23

Summary

In this chapter we have seen how a shell script can be used for several tasks of system
administration. We saw how decision making and looping constructs can be used in shell
scripts. We also saw how we can write a shell script in the form of functions. The shell
script thus offers the facility to combine the power of various inbuilt commands. This makes
it almost equivalent to a higher level programming language.

Advanced Scripting 181

EXERCISE

1. Explain conditional execution in shell script with proper example.
2. Explain case statement of shell script with the option of pattern list.
3. Explain the use of while loop.
4. Explain the use of until loop.
5. Choose the most appropriate option from those given below :
(1) Which of the following command is used to set the file permission as executable?
(a) grep (b) chmod
() I d) x
(2) Which of the following symbol is used to break the flow of control in the case
statement?
(@) ** (b) =
(c) ++ (d) >
(3) Which of the following keyword specifies the end of the case statement?
(a) end-case (b) end case
(c) esac (d) stop-case
(4) Which loop iterates till the condition evaluates to true?
(a) while (b) until
(c) for (d) case
(5) Which of the following allows us to specify a list of values in its statement?
(a) while (b) until
(c) for d) f
(6) In case structure, which of the following character denotes default case?
(@ * (b) +
(c) d (d) All of the above
(7) Which of the following statement is true for testing whether the file is read only or not?
(a) test-read filename (b) check —read filename
(c) test-r filename (d) check —r filename
(8) Which of the following indicate the end of if condition in shell script?
(a) end-if (b) fi
(¢) } (closing curly bracket) (d) It does not have any end statement
(9) Which of the following operator is used for less than comparison in Linux?
(@ < (b) lessthan
(c) I d) -t
(10) Which of the following can be used in place of square brackets used in if condition?
(a) Curly braces (b) test command
(c) check command (d) All of the above
182 Computer Studies : 11

Laboratory Exercises

Write a shell script to perform the following operations:

@)

(b)

©

(d)
()
®
(2

To accept two file names from user. The script should check whether the two
file’s contents are same or not. If they are same then second file should be
deleted.

To count and report the number of entries present in each subdirectory mentioned in
the path, which is supplied as a command-line argument.

To list name and size of all files in a directory whose size is exceeding 1000 bytes
(directory name is to be supplied as an argument to the shell script).

To rename a file.
To convert all file contents to lower case or upper case as specified by user.
To find out available shells in your system and in which shell are you working.

To find out the file that has minimum size from the current directory.

Advanced Scripting 183

